Network of Excellence in Internet Science


Primary tabs

ansgar.koene's picture

Ansgar Koene

As part of the CaSMa project (Citizen Centric Approaches to Social Media Analysis) at the HORIZON Digital Economy Research institute (University of Nottingham) I am working on the development and promotion of ethical approaches to social media analysis (see also
My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed behavioural, psychophysical and Human-Robot Interaction experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.
Based on the philosophy of 'understanding through creating' I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.
Current areas of investigation include: 
- Establishing a Behavior Informatics platform to provide open access to behavior data and models for a deeper, more integrated understanding of human and animal behavior.
- Human-Human object transfer interactions for the purpose of improving Robot-Human interaction. As part of this project I'm also running an internet based experiment on gestures recognition.

Previous and ongoing work includes: 
- Computational modelling of action selection in the Basal Ganglia, Hippocampus based learning of associations between sensory inputs and spatial locations and Amygdala based acquisition of value associations with these sensory inputs patterns. Together these form the basis of a robot control system that uses emotion-inspired processing to bias decision making in mobile robots.
- Top-down modulation of sensory processing, auditory stimulus localization and sensori-motor control in humanoid robots, salience of search targets with multiple features, cross-modal (audio-visual) search, auditory modulation of visual object salience, cross-modal facilitation in signal discrimination, bi-stable visual perception, cerebellar control of saccadic eye movements.